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We describe two methods for modeling the thermal conductivity and temperature profile in
a graded composite film. The film consists of a random binary composite, whose
concentration varies in the direction perpendicular to the film surface, and a fixed
temperature difference is applied across the film. In the first method, the temperature
profile is modeled directly, using a finite element technique in which the film is represented
as a discrete network of thermal conductances, randomly distributed according to the
assumed composition profile. The temperature at each node, and the effective thermal
conductance, is then obtained by a transfer matrix technique. In the second approach, the
film is treated by an effective-medium approximation, suitably generalized to account for
the composition gradient. The methods are in rough agreement with each other, and
suggest that thermophysical properties of the film can be treated reasonably well by
approaches generalized from those which succeed in conventional composites. C© 1999
Kluwer Academic Publishers

1. Introduction
Spatially graded composites are materials comprised of
two or more phases, in which the average composition
varies along some spatial direction. Such materials have
a variety of applications. For example, they form ex-
cellent thermal barriers for separating a region of high
temperature from one of lower temperature. In such
an application, a metal/ceramic composite would be
appropriate. The high-temperature side would be pre-
dominantly ceramic in order to maintain the required
mechanical integrity, while the low-temperature side
would be predominantly metallic in order to produce
desirable mechanical and heat-transfer characteristics.
It has been pointed out by Hirai [1] that most natu-
rally occurring materials (e.g., bamboo) are function-
ally graded, having continuous variation of composition
and structure. The development of models for function-
ally graded composites, for use in design of optimal mi-
crostructures, has received considerable attention over
the past several years [1, 2]. These models require, in
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turn, knowledge of the manner in which relevant ther-
mophysical properties vary with spatial position as a
result of compositional variations.

In the present paper, we address the problem of mod-
eling the thermophysical properties of graded com-
posites using two different approaches, and apply the
results to the calculation of thermal conductivity of spa-
tially graded composites. This property is of great im-
portance, for example, in applications of metal/ceramic
graded composites for use as thermal barriers. Our first
approach is a direct numerical simulation of the ther-
mal conductivity and temperature distribution in such a
composite, using a finite-element method in which the
composite is represented by a discrete network. The
required temperature distribution and effective thermal
conductivities are then obtained by a transfer matrix
algorithm. In the second approach, we derive the same
properties using an extension of a well-known effective-
medium approximation (EMA). While this second ap-
proach is not as accurate as a direct simulation, it gives
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results qualitatively similar to the exact numerical solu-
tions. Because of this similarity, and its analytical ease
of execution, this approximation is likely to be useful
in obtaining quick and reasonable estimates of thermal
profiles and effective conductivities for a wide range of
graded composites.

We turn now to the body of the paper. Section 2 de-
scribes the general model used to describe the graded
composites. In Section 3, we describe our numerical
method of solution for the temperature profile, and
present some numerical results for various methods of
grading the concentration. In Section 4, we present the
corresponding EMA for such graded materials, display
the solutions for a variety of concentration profiles, and
compare the results with the numerical solutions in sev-
eral cases. A discussion, and suggestions for further
applications, follow in Section 5.

2. Model
Our model for the functionally graded composite (FGC)
is quite simple. We take the composite to be a thin film
made up of two components, a poor thermal conduc-
tor and a good thermal conductor. The concentration of
bad conductor is denotedp(z), which we assume to vary
only in thezdirection, i.e., perpendicular to the film, as
is characteristic of an FGC. We take the two faces of the
film to lie at z= 0 andz= d, whered is the film thick-
ness. We assume thatp(z= 0)= p0 andp(z= d)= p1,
with p1 ≥ p0, corresponding to a higher concentration
of good conductor at the bottom (z= 0) and poor con-
ductor at the top of the film (z= d). Within the film, we
consider various models for the variation ofp(z). The
film can then be described by effective thermal con-
ductivitiesκe,⊥ andκe,‖ perpendicular and parallel to
the film. For this anisotropic geometry, these will, in
general, be different, even if the thermal conductivities
κ1 andκ2 of the components are scalars. Usually we
assume boundary conditions consistent with the typi-
cal use of these films:T(z= 0)= T0 andT(z= d)= Td,
with Td ≥ T0. In this geometry, the film acts as a shield
which protects a colder substrate from a hotter environ-
ment.

Both of the methods to be described below allow
one to calculate not onlyκe,⊥ and κe,‖, but also the
temperature profile within the film. In the next sections,
we outline the two methods, as well as our results as
obtained from each method.

3. Finite-element simulation
3.1. Description of the method
In the finite-element approach, one represents the film
as a discrete network of thermal conductances. Specifi-
cally, the network is a mesh of points on a simple cubic
lattice; the bonds are chosen at random to be bad con-
ductor with conductanceκ1 or good conductor with
conductanceκ2 with probabilities p(z) and 1− p(z)
respectively. (Thez coordinate of bonds parallel to the
z axis is taken as that of the midpoint.) We then solve
the Kirchhoff equations for the heat conduction on this
lattice numerically. The output includes the effective

Figure 1 Schematic of the geometry used to calculate the effective ther-
mal conductivityκe,⊥ and temperature profileT(z) using the transfer
matrix algorithm. In this sketch, the film lies betweenz= 0 andz= d,
with the two sides being fixed at temperaturesT0 and Td (Td > T0).
The concentrationp of poor conductor varies in thez direction and is
larger atz = d than atz = 0. The effective thermal conductivity and
temperature profile of the film are calculated using the transfer matrix
algorithm, as described in the text.

thermal conductivitiesκe,‖ andκe,⊥ parallel and per-
pendicular to the films. The same technique allows us
to calculate the average temperature gradient in each
layer, or equivalently, the average thermal conductivity
of each layer in thez direction. We can use any desired
model for p(z), as well as various meshes of differ-
ent fineness. This latter freedom may give information
about the importance of the ratio of particle size to film
thickness, in determiningκe,‖ andκe,⊥.

In order to calculateκe,‖ andκe,⊥ for this geometry,
as well as to calculate the local thermal gradients within
the composite, we use a transfer matrix algorithm which
has proven to be very successful for the analogous prob-
lem of calculating the electrical conductivity and lo-
cal electric field of an inhomogeneous conducting film.
The problems are mathematically equivalent, though
of course physically very different. The method was
first developed to calculate the electrical conductivity
by Derrida and Vannimenus [3], and was generalized to
allow for calculation of electric field distribution within
a random network by Dueringet al [4]. These methods
have already been applied to a range of linear and non-
linear electrical problems in composite materials (see,
for example, [5, 6]). Both methods provide a very ef-
ficient method of solving the analog of the Kirchhoff
circuit equations for these networks, which have the
special kind of random distribution described above.
The geometry used for the transfer matrix calculation
is shown schematically in Fig. 1.

3.2. Numerical results
Table I shows the average temperature profileT(z)
as a function ofz in the simplest graded composite,
in which the concentrationp(z) varies linearly with
z (p (z)= z/d). In this case, we have assumed that the
ratioκ2/κ1 of good to bad conductivities is 100. Table II
shows the effective conductivitiesκe,⊥ in the direction
perpendicular to the film for two different concentra-
tion profiles:p (z)= z/d, andp (z)= 1− [(1− z/d)2].
In both cases, the calculation is carried out for a
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TABLE I Av erage temperatureT(z) at as a function of normalized
distancez into film, as calculated numerically using the transfer matrix
approach.The grid (as described in the text) is 10× 10× 100. The
concentration of bad thermal conductor is assumed to bep(z) = z/d.
The boundary conditions areT(z = 0) = 0, T(z = d) = 1. The ratio
κ2/κ1 of good of bad conductances is 100

z/d T

1.0 1
0.9 0.22164
0.8 0.17132
0.7 0.13750
0.6 0.11392
0.5 0.09016
0.4 0.07083
0.3 0.05188
0.2 0.03341
0.1 0.01495
0.0 0

TABLE I I Ef fective thermal conductivityκe,⊥ in the direction per-
pendicular to the film, plotted as a function of fineness of grid, for an
L × L × 100 sample and two different variationsp(z) of concentra-
tion of bad conductor. The ratio of good to bad bond conductances is
κ2/κ1 = 100, and the concentration of bad conductor isp(z) = z/d
(column 2), andp(z) = 1− (1− z/d)2 (column 3)

κe,⊥/κ1 κe,⊥/κ1

L [ p = z/d] [ p = 1− (1− (z/d))2]

20 3.5968 2.0798
40 3.6396 2.0648
60 3.669 2.0706
80 3.6672 2.0736
100 3.685 2.08

TABLE I I I Same as Table II, except that we plot the effective thermal
conductivityκe,‖ in the direction parallel to the film, withp(z) = z/d.
In this calculation the sample size isL × 10× 10,000

L κe,‖/κ1

2 50.5504
3 42.5116
4 40.1005
5 39.1900
6 38.5724

L × L × 100 slab of points (in the sense described
in [6]). If one views the length of a bond as a crude
measure of the grain size in the composite, then the
size dependence of the results might be interpreted as
an indication of the importance of grain size, relative
to film thickness, in determining the thermal properties
of the composite. Table III is a tabulation of the con-
ductivity κe,‖ in the direction parallel to the film, for
a linear concentration profile, once again shown as a
function of mesh finenessL.

4. Effective medium approximation
4.1. Formalism
Next, we discuss a simple quasi-analytical approxima-
tion which reproduces some of the numerical results

which were obtained in the previous sections using dis-
crete network models.

We consider the graded composite of the previ-
ous section, containing a volume fractionsp(z) and
1 − p(z) of materials with thermal conductivitiesκ1
andκ2(κ2 > κ1), distributed at random. To achieve the
purpose of an FGM,p(z) is chosen in such a way that
there is a higher concentration of good conductor near
the bottom of the film. Since the bottom of the film
(at z= 0) is maintained at a temperatureT0 and the top
(atz= d) at temperatureTd ≥ T0, an average tempera-
ture gradient of (Td − T0)/d is created across the entire
film. The problem is to develop a theory to estimate
the temperature profile and the effective thermal
response.

Note that whilep(z) may vary smoothly, the effec-
tive thermal conductivityκ(z), which describes thelo-
cal in-plane thermal conductivity of a particular layer
located atz, may have a different variation, sinceκ(z)
depends sensitively onp(z). In particular, for a slab
of material atz, if the concentration of the good ther-
mal conductor (1− p(z)) exceeds a critical valuepc,
then that slab has a large thermal conductivityκ(z),
whereas, if (1− p(z)) < pc, thenκ(z) is small. Thus,
a linear variation of concentrationp(z) varying from
p= 0 to p= 1 over the film thickness will not produce
a linearly varyingκ(z). Instead, the entire region where
1− p(z) < pc has a low thermal conductivity. Thisper-
colation effectdepends on the percolation thresholdpc

for the high-conductivity component. This percolation
effect must be properly included in considering the ther-
mal response of the FGM; it is included in both the
numerical simulations given above, and the analytical
approximation which we now describe.

The EMA theory to be presented consists basically of
two ingredients. First,κ(z) is found by using the three
dimensional (3D) Bruggeman effective medium ap-
proximation (EMA). The 3D EMA is appropriate here
because, although we are interested in the thermal con-
ductivity of a given layer, the current can also be trans-
ported in the direction perpendicular to the film plane.
The temperature profileT(z) perpendicular to the film
thickness is then obtained by solving a one-dimensional
(1D) boundary value problem in thez-direction. This
approach provides a simple theory for estimating the
properties of the FGM.

4.1.1. EMA for κ(z)
Since the equations governing steady state problem in
heat conduction are analogous to those for electrical
transport, we can readily extend the electrical EMA to
determineκ(z). Explicitly, the thermal equations in the
steady-state areJQ=−κ∇T and∇ · JQ= 0, whereJQ
is the heat current density, while in the analogous elec-
trical transport problem, the equations areJ=−σ∇V
and∇ · J= 0, whereJ is the electrical current density,
V the electrostatic potential, andσ the electrical con-
ductivity. The EMA in 3D is a quadratic equation for
the local thermal conductivity which takes the form [7]

p(z)
κ1− κ(z)

κ1+ 2κ(z)
+ (1− p(z))

κ2− κ(z)

κ2+ 2κ(z)
= 0. (1)
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The positive solution to Equation 1 forκ(z) is

κ(z)

κ1
= 1

4

[
(1− 3p(z))

(
κ2

κ1
− 1

)
+ κ2

κ1

]

+ 1

4

√√√√[(1− 3p(z))

(
κ2

κ1
− 1

)
+ κ2

κ1

]2

+ 8
κ2

κ1
.

(2)

For any given concentration profilep(z), Equation 2
gives the local thermal conductivityκ(z).

4.1.2. Temperature Profile
Onceκ(z) is known, the problem reduces to a 1D bound-
ary value problem along thez-direction. The steady
state equation is

d

dz

[
κ(z)

dT(z)

dz

]
= 0, (3)

with boundary conditionsT(z= 0)= T0; T(z= d) =
Td. Equation 3 can be formally integrated to give

T(z) = T0+ A
∫ z

0

1

κ(z′)
dz′, (4)

where A is determined byT(d) = Td. Together with
Equation 2 forκ(z), Equation 4 gives a simple expres-
sion for determiningT(z) across the entire film.

One may define an effective thermal conductivity
κe,⊥ for the entire film via its inverse, by averaging
1/κ(z) over the film thickness, i.e.,

1

κe,⊥
= 1

d

∫ d

0

1

κ(z′)
dz′. (5)

(The inverse is averaged because, in calculatingκe,⊥,
the thermalresistancesof the layers add in series.) Us-
ing Equation 5, Equation 4 forT(z) can be re-expressed
in terms of the effective thermal conductivity as

T(z) = T0+ Td − T0

d
κe,⊥

∫ z

0

1

κ(z′)
dz′. (6)

Equations 2, 5 and 6 are the main results of the pre-
sent theory. For any given concentration profile, they
can be applied to estimate the temperature profile and
the effective thermal response. Conversely, they can be
used to find the optimum concentration profile needed
to produce a specific temperature profile desired for
a particular application. For an arbitrary concentration
profile, T(z) can be easily obtained by numerical in-
tegrating Equation 4, or equivalently Equation 6, and
using the appropriate boundary conditions.

Similarly, the effective thermal conductivityκe,‖ in
the direction parallel to the film can be defined within

the EMA as

κe,‖ = 1

d

∫ d

0
κ(z) dz. (7)

4.2. Applications
4.2.1. Linear concentration profile
As a first illustration, we consider a linear concentration
profile across the thickness of the film. A special case
of a linear profile isp(z) = z/d, so thatp(z) varies
from p = 0 at the bottom of the film (z= 0) to p = 1
at the top of the film (z = d). In this case, the local
thermal conductivity following from Equation 2 is

κ(z)

κ1
= 1

4

[(
1− 3

z

d

)
(β − 1)+ β

]

+ 1

4

√√√√[(1− 3
z

d

)
(β − 1)+ β

]2

+ 8β, (8)

whereβ ≡ κ2/κ1 is the ratio of the thermal conduc-
tivities of the two components. The spatial variation of
κ(z) for this concentration profile is shown in the inset
of Fig. 2 forβ = 100, corresponding to the case stud-
ied numerically in the previous section; the percolation
effect is clearly evident.

The temperature profile for this linear concentra-
tion profile can be calculated analytically. Substituting
Equation 8 into Equation 4 and defining the dimen-
sionless quantityx = (1− 3z/d)(β − 1)+ β, so that
2− β < x < 2β − 1 for the allowed range ofz, the
integral forT(z) can be cast into the form

T(z) = − 4A

3(β − 1)

∫
1

x +
√

x2+ 8β
dx. (9)

The integration can be carried out to give

T(x) = −4A

3(β − 1)

{
− x2

16β
+ x

16β

√
x2+ 8β

+ 1

2
ln
(

x +
√

x2+ 8β
)}
+ B, (10)

where the constantsA and B are determined by the
boundary conditions. Upon solving forA and B, we
finally obtain

T(x) = Td − Td − T0

C

{
− x2

16β
+ x

16β

√
x2+ 8β

+ 1

2
ln

(
x +

√
x2+ 8β

4

)
+ β − 2

8

}
, (11)

where the denominatorC is given by

C = 1

2
lnβ + β

2− 1

8β
. (12)
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TABLE IV Temperature profile for different concentration profiles, as obtained using the effective-medium approximation. Effective conductivity
perpendicular to the film for these profiles is shown in the bottom line of the Table

z/d p(z) = z/d (z/d)2 (z/d)1/2 (1+ 3(z/d)2)/4 (3/4)
√

z/d 1− [1− (z/d)]2

1 1 1 1 1 1 1
0.9 0.57104 0.36517 0.72250 0.48808 0.67557 0.75979
0.8 0.28495 0.14217 0.49066 0.21948 0.45299 0.53368
0.7 0.13125 0.09064 0.30657 0.12043 0.30862 0.33564
0.6 0.07071 0.06700 0.17204 0.08315 0.21443 0.17920
0.5 0.04518 0.05101 0.08690 0.06148 0.14959 0.07623
0.4 0.03028 0.03841 0.04326 0.04560 0.10234 0.02935
0.3 0.01987 0.02765 0.02270 0.03253 0.06643 0.01394
0.2 0.01189 0.01795 0.01146 0.02100 0.03846 0.00701
0.1 0.00543 0.00884 0.00445 0.01031 0.01653 0.00285
0 0 0 0 0 0 0
κe,⊥ 5.01644 8.79267 2.99639 6.47546 12.5329 2.42561

Figure 2 Plot of the temperature profileT(z) within a functionally
graded composite film in which the concentrationp(z) of poor conductor
varies linearly from 0 at the bottom of the film (atz= 0) to 1 at the top
of the film (atz = d). The boundary conditions areT(z = 0) = T0;
T(d) = Td. Full line: EMA [Equation 11]; points, numerical simula-
tions. In both cases, we assumeβ ≡ κ2/κ1 = 100. The inset shows
the local thermal conductivityκ(z)/κ1 as function of the positionz/d as
calculated within EMA [Equation 8]. Both the temperature profile and
the local thermal conductivity show the percolating effect as described
in the text.

Note thatC does not depend on the height variable
x (or z), but is simply a constant for a given ratioβ
of the constituent thermal conductivities. Equations 11
and 12 give an analytical expression for the temperature
profileT(x) for a linear concentration profile of the bad
thermal conductor across the film. It is expressed in
terms of the variablex = (1−3z/d)(β−1)+β, which
varies in the range 2− β < x < 2β − 1 over the film
thickness.

The predictions of Equation 11 are shown in Fig. 2, as
well as in the second column of Table IV. Note that the
drop in temperature occurs mostly in the upper (poorly-
conducting) half of the film, i.e., forz > d/2. The
drop is a strongly nonlinear function ofz even though
the concentration profile is linear inz. However,T(z)
does not drop as abruptly nearz = d as in the nu-
merical simulations for the same concentration profile.

Although the trend is consistent between the numerical
and analytical calculations, we attribute the differences
to the fact that the analytical theory is based on a simple
mean-field-like estimate of the concentration profile,
which overestimates how smoothly various properties
vary with z.

Given the temperature profile, the effective thermal
conductivityκe,⊥ perpendicular to the film can be found
for anyβ by integrating Equation 5; the result is

κe,⊥
κ1
= 3(β − 1)

2

[
lnβ + β

2− 1

4β

]−1

. (13)

Thus, forβ = 100, κe,⊥/κ1 ∼ 5.0164. This result
should be compared with those shown in the second
column of Table II. Similarly,κe,‖ can be found from
Equation 7 to beκe,‖/κ1 = 35.2172, which should be
compared with the values reported in Table III. It should
also be pointed out that the EMA, in its present form,
does not take into account of any finite size effects [5].
The results are thus valid for films with linear dimen-
sions, either parallel or perpendicular to the film, large
compared with the grain size.

4.2.2. Quadratic concentration profile
Next we considerp(z) = (z/d)2, i.e., a concentration of
poor conductor which varies quadratically with height
within the film. In this case,κe,⊥ can be obtained by
carrying out the integration in Equation 5 numerically.
For the ratioκ2/κ1 = 100 used in the network simu-
lations of the previous section, this integration yields
κe,⊥/κ1 = 8.79267, significantly larger than the linear
profile. The reason for this difference is that the con-
centration profile (z/d)2, when integrated overz, gives
a smaller overall volume fraction of poor conductor in
the entire film than does the linear concentration profile
with the same limiting concentrations. This lower over-
all concentration, combined with a larger concentration
of good conductor at any given height within the film,
leads to larger local thermal conductivitiesκ(z) than in
the case of a linear profile, and hence to a higherκe,⊥.

T(z) for this composition profile can be obtained
most conveniently by numerically integrating Equa-
tion 6. The results are shown in the third column of
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Table IV. In comparison toT(z) for a linear concen-
tration profile, the temperature in the quadratic case
drops more rapidly near the top (i. e., the hot) sur-
face of the film. The reason for this behavior is that
there is only a small concentrationp(z) of poor con-
ductor on the cold side of the film because of itsz2

concentration-dependence. Hence, most of the film is
effectively a good thermal conductor, and only a thin
layer near the top surface is poorly conducting. The
temperature, therefore, drops more steeply near the top
surface.

We now compare the results from a linear concen-
tration profile to those obtained from a quadratic pro-
file containing thesametotal volume fraction of poor
conductor in the entire film. The concentration pro-
file p(z) = [1 + 3(z/d)2]/4 satisfies this requirement,
since

∫ d
0

1
4[1+ 3(z/d)2]dz= ∫ d

0 (z/d)dz= d/2. Note
that in this case the concentration of poor conductor at
z= 0 is finite. This condition is needed if we require a
quadratic profile distributed in such a way thatp(z =
d) = 1, while still containing the same amount of poor
conductor as in a film with a linear concentration pro-
file. The temperature profile resulting from thisp(z) is
readily obtained numerically from Equations 2 and 6;
the results are listed in the 5th column of Table IV. In
comparison to the linear profile, the temperature drop
is slightly steeper in the upper part of the film, because
of thez2 concentration-dependence. However, the tem-
perature varies only slowly in the lower half of the film
(z< d/2), because of the slow variation of the concen-
tration of poor conductor withz in this part of the film.

4.2.3. Square-root concentration profiles
While p(z) = (z/d)2 implies a smaller volume fraction
of poor conductor than a linear variation, a square-root
profile p(z) = √z/d implies alarger volume fraction
of poor conductor. In this case, the EMA leads to a ther-
mal conductivityκe,⊥ = 2.99639. This value is smaller
than that of a linear profile, because of the larger amount
of poor conductor. The calculated temperature profile is
shown in the fourth column of Table IV. Note thatT(z)
varies more slowly withz in the upper part of the film
(z> d/2) than in the linear case; this slow variation is
due to the relatively slow decrease in concentration of
poor conductor in the upper part of the film.

Next, we consider the concentration profilep(z) =
(3/4)
√

z/d, which carries thesameamount of poor
conductor as in a linear profile. In this case, the re-
distribution of poor conductor into a

√
z profile leads

to p = 3/4 atz= d, rather thanp = 1 as in the linear
profile. Solving for the effective thermal conductivity
in this case, we findκe,⊥ = 12.5329. The higherκe,⊥
results from the fact that the concentration of poor con-
ductor is suppressed near the top of the film. In fact,
p < 3/4 at any depth inside the film, implying that
much of the film is a relatively good thermal conduc-
tor. The temperature profile for this case is shown in
the 6th column of Table IV. The temperature variation
is slower than in the linear case, because of the fact that
κ(z) is slowly varying withz.

The last column in Table IV gives the EMA results
for p(z) = 1− [1− (z/d)]2, the simulation results for

which were shown in the last column of Table II. This
profile corresponds to a concentration of good conduc-
tor which increases quadratically with distance away
from the hot side (z = d) of the film. Qualitatively,
this p(z) profile looks quite similar to the square-root
profile discussed earlier; hence, the temperature profile
andκe,⊥ are similar to those in the fourth column of
Table IV.

5. Discussion
It may appear surprising that, in dealing with a graded
composite, we use a 3D rather than a 2D EMA to es-
timate the local thermal conductivity at a particular
height z in the film. But in fact this is a correct pro-
cedure: using the 3D EMA ensures that, when the vol-
ume fraction isz-independent, the 3D EMA result is
recovered.

On the other hand, the EMA procedure for a graded
composite is probably most suitable only if certain ge-
ometric conditions are satisfied. We now discuss what
these conditions are likely to be. Recall that the EMA
is obtained (in a two-component composite, for exam-
ple) by imagining a particle of each type embedded in
an effective medium which is self-consistently deter-
mined. The usual EMA Equation 1 is obtained if that
medium is uniform. It is reasonable to use the same
procedure for agradedcomposite, therefore, if the av-
erage concentration does not vary substantially on the
length scale of the size of the particles being embedded.
To make this rather vague condition slightly more pre-
cise, we might demand that the volume fraction vary
by no more than|1p| over a distancena, where1p
is a small percentage of unity,a is a typical particle
radius, andn À 1 is a suitable distance factor. These
conditions may be combined to give the requirement
|dp/dz|na < |1p|, where dp/dz is the magnitude of
the concentration gradient. Equivalently, this condition
may be written

a|dp/dz| ¿ 1. (14)

Thus, for agivenconcentration gradient, our effective-
medium approach should be best for very small parti-
cles.

The present work can be extended in a variety of
ways. For example, the same numerical technique used
to find the thermal conductivity within the composite in
Section 3 can also be used to calculate the distribution
of temperature gradients in the composite. The calcula-
tion is analogous to that used to compute the distribution
of electric fields in an electrical composite. Moreover,
the present approach is not limited to problems at zero
frequency, nor to thermal properties. For example, one
could study the optical, infrared, microwave, or non-
linear optical properties of functionally graded optical
composites; these could be potentially of even greater
interest than the FGC’s used as thermal barriers. Fi-
nally, it might be of interest to extend the graded EMA
approach used here to treat explicitly time-dependent
problems, such as the time-dependent equation for ther-
mal diffusion in the functionally graded composite.
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