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We describe two methods for modeling the thermal conductivity and temperature profile in
a graded composite film. The film consists of a random binary composite, whose
concentration varies in the direction perpendicular to the film surface, and a fixed
temperature difference is applied across the film. In the first method, the temperature
profile is modeled directly, using a finite element technique in which the film is represented
as a discrete network of thermal conductances, randomly distributed according to the
assumed composition profile. The temperature at each node, and the effective thermal
conductance, is then obtained by a transfer matrix technique. In the second approach, the
film is treated by an effective-medium approximation, suitably generalized to account for
the composition gradient. The methods are in rough agreement with each other, and
suggest that thermophysical properties of the film can be treated reasonably well by
approaches generalized from those which succeed in conventional composites. © 7999
Kluwer Academic Publishers

1. Introduction turn, knowledge of the manner in which relevant ther-
Spatially graded composites are materials comprised ohophysical properties vary with spatial position as a
two or more phases, in which the average compositiomesult of compositional variations.

varies along some spatial direction. Such materials have In the present paper, we address the problem of mod-
a variety of applications. For example, they form ex-eling the thermophysical properties of graded com-
cellent thermal barriers for separating a region of highposites using two different approaches, and apply the
temperature from one of lower temperature. In suctresults to the calculation of thermal conductivity of spa-
an application, a metal/ceramic composite would beially graded composites. This property is of great im-
appropriate. The high-temperature side would be preportance, for example, in applications of metal/ceramic
dominantly ceramic in order to maintain the requiredgraded composites for use as thermal barriers. Our first
mechanical integrity, while the low-temperature sideapproach is a direct numerical simulation of the ther-
would be predominantly metallic in order to produce mal conductivity and temperature distribution in such a
desirable mechanical and heat-transfer characteristiceomposite, using a finite-element method in which the
It has been pointed out by Hirai [1] that most natu-composite is represented by a discrete network. The
rally occurring materials (e.g., bamboo) are function-required temperature distribution and effective thermal
ally graded, having continuous variation of compositionconductivities are then obtained by a transfer matrix
and structure. The development of models for function-algorithm. In the second approach, we derive the same
ally graded composites, for use in design of optimal mi-properties using an extension of a well-known effective-
crostructures, has received considerable attention ovemedium approximation (EMA). While this second ap-
the past several years [1, 2]. These models require, iproach is not as accurate as a direct simulation, it gives
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results qualitatively similar to the exact numerical solu- —x T(z=d)=T,
tions. Because of this similarity, and its analytical ease
of execution, this approximation is likely to be useful
in obtaining quick and reasonable estimates of therme
profiles and effective conductivities for a wide range of
graded composites. L.
We turn now to the body of the paper. Section 2 de-
scribes the general model used to describe the grade
composites. In Section 3, we describe our numerica
method of solution for Ithe thmfperatu_re profilerz], gnd N T(2=0) =T,
present some numerical results for various methods ¢
grading the concentration. In Section 4, we present th_ < Lx=5 g
correqundlng EMA fpr such graded m.atenals.’ display igure 1 Schematic of the geometry used to calculate the effective ther-
the solutions for avan_ety of concen_tratlon pr_oflle_s, a‘ndlr:rlal conductivityxe | and temperature profil&(z) using the transfer
compare the results with the numerical solutions in S&Vmatrix algorithm. In this sketch, the film lies betwees- 0 andz = d,

eral cases. A discussion, and suggestions for furthetith the two sides being fixed at temperatufigsand Ty (Tg > To).

applications, follow in Section 5. The concentratiorp of poor conductor varies in thedirection and is
larger atz = d than atz = 0. The effective thermal conductivity and
temperature profile of the film are calculated using the transfer matrix
algorithm, as described in the text.

2. Model
Our model for the functionally graded composite (FGC)
is quite simple. We take the composite to be a thin filmthermal conductivitiege | and«e  parallel and per-
made up of two components, a poor thermal conducpendicular to the films. The same technique allows us
tor and a good thermal conductor. The concentration ofo calculate the average temperature gradient in each
bad conductor is denotg{z), whichwe assumetovary layer, or equivalently, the average thermal conductivity
only in thez direction, i.e., perpendicular to the film, as of each layer in the direction. We can use any desired
is characteristic of an FGC. We take the two faces of thenodel for p(z), as well as various meshes of differ-
filmto lie atz=0 andz=d, whered is the film thick-  ent fineness. This latter freedom may give information
ness. We assume thpz = 0)= pp andp(z=d) = ps, about the importance of the ratio of particle size to film
with p; > po, corresponding to a higher concentrationthickness, in determininge | andxe | .
of good conductor at the bottora £ 0) and poor con- In order to calculate, | andke | for this geometry,
ductor at the top of the filmz(=d). Within the film, we  aswell as to calculate the local thermal gradients within
consider various models for the variationp(fz). The  the composite, we use a transfer matrix algorithm which
film can then be described by effective thermal con-has proven to be very successful for the analogous prob-
ductivitieske | andke perpendicular and parallel to |em of calculating the electrical conductivity and lo-
the film. For this anisotropic geometry, these will, in cal electric field of an inhomogeneous conducting film.
general, be different, even if the thermal conductivitiesThe problems are mathematically equivalent, though
k1 andkz of the components are scalars. Usually weof course physically very different. The method was
assume boundary conditions consistent with the typifirst developed to calculate the electrical conductivity
caluse ofthese fiimd:(z=0)=ToandT(z=d)=Ty, by Derrida and Vannimenus [3], and was generalized to
with Tq > To. In this geometry, the film acts as a shield allow for calculation of electric field distribution within
which protects a colder substrate from a hotter environa random network by Dueringf al[4]. These methods
ment. have already been applied to a range of linear and non-
Both of the methods to be described below allowlinear electrical problems in composite materials (see,
one to calculate not onlye ; andke, but also the for example, [5, 6]). Both methods provide a very ef-
temperature profile within the film. In the next sections,ficient method of solving the analog of the Kirchhoff
we outline the two methods, as well as our results agircuit equations for these networks, which have the
obtained from each method. special kind of random distribution described above.
The geometry used for the transfer matrix calculation
is shown schematically in Fig. 1.

3. Finite-element simulation

3.1. Description of the method

In the finite-element approach, one represents the filn3.2. Numerical results

as a discrete network of thermal conductances. Specififable | shows the average temperature profilg)
cally, the network is a mesh of points on a simple cubicas a function ofz in the simplest graded composite,
lattice; the bonds are chosen at random to be bad corr which the concentratiorp(z) varies linearly with
ductor with conductance; or good conductor with z(p(2) =z/d). In this case, we have assumed that the
conductancex, with probabilities p(z) and 1— p(2) ratiox,/x1 of good to bad conductivities is 100. Table
respectively. (The coordinate of bonds parallel to the shows the effective conductivitigs ; in the direction

Z axis is taken as that of the midpoint.) We then solveperpendicular to the film for two different concentra-
the Kirchhoff equations for the heat conduction on thistion profiles:p (z) = z/d, andp (z) = 1 —[(1 — z/d)?].
lattice numerically. The output includes the effectiveIn both cases, the calculation is carried out for a
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TABLE | Average temperatur(z) at as a function of normalized which were obtained in the previous sections using dis-
distancez into film, as calculated numerically using the transfer matrix crete network models.

approach.The grid (as described in the text) isx1@0 x 100. The . . .
concentration of bad thermal conductor is assumed tp(ag = z/d. We consider the graded composite of the previ

The boundary conditions afe(z = 0) = 0, T(z = d) = 1. The ratio ~ OUS Section, Contfiining_ a volume fraCtiOpS.Z)_ _and
«2/x1 of good of bad conductances is 100 1 — p(2) of materials with thermal conductivities,

andx,(k2 > k1), distributed at random. To achieve the

2/d T purpose of an FGMp(z) is chosen in such a way that
1.0 1 there is a higher concentration of good conductor near
0.9 0.22164 the bottom of the film. Since the bottom of the film
0.8 0.17132  (atz=0) is maintained at a temperatufgand the top

0.7 013750 (atz=d) at temperatur@y > To, an average tempera-
8:2 g:éégié ture gradient of {4y — Tp)/d is created across the entire
0.4 0.07083 film. The problem is to develop a theory to estimate
0.3 0.05188 the temperature profile and the effective thermal
0.2 0.03341  response.

8-(1) 8-01495 Note that whilep(z) may vary smoothly, the effec-

tive thermal conductivity (z), which describes thie-
cal in-plane thermal conductivity of a particular layer
located atz, may have a different variation, sine¢z)
TABLE |1 Effective thermal conductivite . in the direction per- depends sensitively op(z). In particular, for a slab
pendicular to the film, plotted as a function of fineness of grid, for an Of material atz, if the concentration of the good ther-
L x L x 100 sample and two different variatiom¢z) of concentra- ~ mal conductor (- p(z)) exceeds a critical valugc,

tion of bad conductor. The ratio of good to bad bond conductances isthen that slab has a |arge thermal conductivti(y)
k2/k1 = 100, and the concentration of bad conductop{g) = z/d !

(column 2), andb(2) = 1 — (1 — z/d)? (column 3) Wh'ereas, if .(1—. p(2) < pe, then'/c(z) is smgll. Thus,
a linear variation of concentratiop(z) varying from

Ke 1 /K1 Ke 1 /K1 p=0to p=1 over the film thickness will not produce
L [p=z/d] [P=1-Q-@d)¥]  alinearly varyinge(z). Instead, the entire region where
20 3.5068 20798 1-— p(z) < pchasalowthermal conduqtivity. Thier-
40 3.6396 2.0648 colation effectiepends on the percolation threshpld
60 3.669 2.0706 for the high-conductivity component. This percolation
80 3.6672 2.0736 effect must be properly included in considering the ther-
100 3.685 2.08

mal response of the FGM; it is included in both the
numerical simulations given above, and the analytical
approximation which we now describe.

The EMA theory to be presented consists basically of

TABLE Il Same as Table Il, except that we plot the effective thermal . . . . .

conductivityxe | in the direction parallel to the film, witip(z) = z/d. tV_VO Ingl_redlentS- First (2) is found by using the_ three

In this calculation the sample sizelisx 10x 10,000 dimensional (3D) Bruggeman effective medium ap-

i ; proximation (EMA). The 3D EMA is appropriate here
Ke,|| /K1

because, although we are interested in the thermal con-
505504 ductivity of a given layer, the current can also be trans-
425116  ported in the direction perpendicular to the film plane.
40.1005  The temperature profil&(z) perpendicular to the film
gg-éggg thickness is then obtained by solving a one-dimensional

' (1D) boundary value problem in thedirection. This
approach provides a simple theory for estimating the
properties of the FGM.

o U WN

L x L x 100 slab of points (in the sense described
in [6]). If one views the length of a bond as a crude 4.7.1. EMA for «(z)
measure of the grain size in the composite, then th&ince the equations governing steady state problem in
size dependence of the results might be interpreted d¥at conduction are analogous to those for electrical
an indication of the importance of grain size, relativetransport, we can readily extend the electrical EMA to
to film thickness, in determining the thermal propertiesdeterminec(z). Explicitly, the thermal equations in the
of the composite. Table Ill is a tabulation of the con- steady-state aréy = —« VT andV - Jo =0, whereJq
ductivity ke in the direction parallel to the film, for is the heat current density, while in the analogous elec-
a linear concentration profile, once again shown as #ical transport problem, the equations dre- —o VV
function of mesh fineneds. andV - J =0, wherel is the electrical current density,
V the electrostatic potential, ardthe electrical con-
ductivity. The EMA in 3D is a quadratic equation for

4. Effective medium approximation the local thermal conductivity which takes the form [7]

4.1. Formalism

Next, we discuss a simple quasi-analytical approxima- (z k1 — k(2) (1 - p(2) K2 —k(2) — (1)
. . i p + p

tion which reproduces some of the numerical results K1+ 2(2) K2 + 2k(2)
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The positive solution to Equation 1 feKz) is the EMA as

1 d
- 1[(1— o000 (35 -1) + _} o= |, @z "
K1 K1

k1 4

2 . .
1 K2 K2 K2 4.2. Applications
T ZJ [(1 —3p(2) (K_l - 1) + K_j +8_ 4.2.1. Linear concentration profile
As afirstillustration, we consider a linear concentration
(2) profile across the thickness of the film. A special case
of a linear profile isp(z) = z/d, so thatp(z) varies
For any given concentration profile(z), Equation 2  rom p = 0 atthe bottom of the filmz= 0) top =1

gives the local thermal conductivity(2). at the top of the_ f_ilml = Q). In this case, the _Iocal
thermal conductivity following from Equation 2 is

4.1.2. Temperature Profile @ _1 (1 _ 3_) B-1)+8
Oncex(z) is known, the problemreducestoa 1D bound- &1 4 d

ary value problem along the-direction. The steady
2
1 z
+ZJ {(1—36) (8 - 1)+/8} +88. (8)

state equation is

4 [K(z)d”z)} —o. ©)

dz dz whereB = «k»/k1 is the ratio of the thermal conduc-
tivities of the two components. The spatial variation of
with boundary conditiond (z=0) = Tp; T(z=d) =  «(2) for this concentration profile is shown in the inset
Tq. Equation 3 can be formally integrated to give of Fig. 2 for 8 = 100, corresponding to the case stud-
ied numerically in the previous section; the percolation

z q effect is clearly evident.

T(2) =T+ A/ - dz, (4) The temperature profile for this linear concentra-
o «(z) tion profile can be calculated analytically. Substituting

) ) ) Equation 8 into Equation 4 and defining the dimen-
Equation 2 forc(z), Equation 4 gives a simple expres- 2 _ g — x < 28 — 1 for the allowed range o, the

sion for determiningr (z) across the entire film. integral forT (z) can be cast into the form
One may define an effective thermal conductivity
ke for the entire film via its inverse, by averaging 4A 1
1/ (2) over the film thickness, i.e., T(9) = “36-1) xS dx.  (9)
11 /d 1 47 (5) The integration can be carried out to give
Ke, | dJo «x(2) .
—4A x2 X
_ - T 2
(The inverse is averaged because, in calculating, T = 3(8 — 1){ 168 + 168 x“+8p
the thermaresistancesf the layers add in series.) Us- 1
ing Equation 5, Equation 4 far(z) can be re-expressed + —In(x + X2+ 8ﬂ)} + B, (10)
in terms of the effective thermal conductivity as 2
Ty—To z 1 where the constantd and B are determined by the
T(2)=To+ 3 Ke,J_/ @ dZ.  (6) boundary conditions. Upon solving fak and B, we
o K finally obtain
Equations 2, 5 and 6 are the main results of the pre- T )
sent theory. For any given concentration profile, theyr .y _ 1, _ d— o} X* = X /r5 oz
can be applied to estimate the temperature profile anc]-( ) d C 168 + 168 +8p

the effective thermal response. Conversely, they can be

used to find the optimum concentration profile needed 1 | X+ /X2 +88 B—2

to produce a specific temperature profile desired for + 2 n 4 + )

a particular application. For an arbitrary concentration

profile, T(z) can be easily obtained by numerical in- . L

tegrating Equation 4, or equivalently Equation 6, andWhere the denominat@ is given by

using the appropriate boundary conditions. )
Similarly, the effective thermal conductivitye, | in C— }Inﬁ i B — 1. (12)

the direction parallel to the film can be defined within 2 88
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TABLE 1V Temperature profile for different concentration profiles, as obtained using the effective-medium approximation. Effective conductivity
perpendicular to the film for these profiles is shown in the bottom line of the Table

z/d p(z) = z/d (z/dy? (z/d)"/? (1+3(z/d)?)/4 (3/4)vz/d 1-[1—(z/d)?
1 1 1 1 1 1 1
0.9 0.57104 0.36517 0.72250 0.48808 0.67557 0.75979
0.8 0.28495 0.14217 0.49066 0.21948 0.45299 0.53368
0.7 0.13125 0.09064 0.30657 0.12043 0.30862 0.33564
0.6 0.07071 0.06700 0.17204 0.08315 0.21443 0.17920
0.5 0.04518 0.05101 0.08690 0.06148 0.14959 0.07623
0.4 0.03028 0.03841 0.04326 0.04560 0.10234 0.02935
0.3 0.01987 0.02765 0.02270 0.03253 0.06643 0.01394
0.2 0.01189 0.01795 0.01146 0.02100 0.03846 0.00701
0.1 0.00543 0.00884 0.00445 0.01031 0.01653 0.00285
0 0 0 0 0 0 0
Kel 5.01644 8.79267 2.99639 6.47546 12.5329 2.42561
1.0 ‘ ‘ ‘ ‘ Although the trend is consistent between the numerical
and analytical calculations, we attribute the differences
100 to the fact that the analytical theory is based on a simple
0.8 | g0 | k=100 mean-field-like estimate of the concentration profile,
- = which overestimates how smoothly various properties
% & vary with z.
= 06 | 40T 1 | leen.the temperature profile, the _effectlve thermal
L 20 | . conductivityke ;| perpendicular to the film can be found
g ol v for any 8 by integrating Equation 5; the result is
e 00 02 0.4 06 08 1.0
g 04|
ket _ 3(8— 1>[ B> — 1}‘1
= ————|InB+—— . (13)
N K1 2 48
0.2t . 1
Lo Thus, forg = 100, ke 1 /k1 ~ 5.0164. This result
Lot should be compared with those shown in the second
0.0 . : : : column of Table II. Similarlyxe ; can be found from
0.0 02 0.4 0.6 038 1.0 Equation 7 to be /k1 = 352172, which should be
z/d compared with the values reported in Table lll. It should

Figure 2 Plot of the temperature profil&(z) within a functionally also be pomte.d out that the EMA’.W! Its Present form,
graded composite film in which the concentratju@) of poor conductor ~ does not take into account of any finite size effects [5].
varies linearly from 0 at the bottom of the film @t= 0) to 1 atthetop  The results are thus valid for films with linear dimen-

?f(g)‘e f”? (";tZ”T d)-g&iﬁgund?fy Cfln]di“o_”stj ar(z = 0) |=_T0?| sions, either parallel or perpendicular to the film, large
= Iq. FUll Ine: quation , points, numerical simula- H H H
tions. In both cases, we assurie= k2/k1 = 100. The inset shows compared with the grain size.

the local thermal conductivity(z) /«1 as function of the position/d as
calculated within EMA [Equation 8]. Both the temperature profile and

_the local thermal conductivity show the percolating effect as described 2. 2. Quadratic concentration profile
in the text. Nextwe considep(z) = (z/d)?, i.e., aconcentration of
poor conductor which varies quadratically with height
Note thatC does not depend on the height variablewithin the film. In this casexe , can be obtained by
x (or 2), but is simply a constant for a given rati®p  carrying out the integration in Equation 5 numerically.
of the constituent thermal conductivities. Equations 11For the ratiok,/k1 = 100 used in the network simu-
and 12 give an analytical expression for the temperaturkations of the previous section, this integration yields
profile T (x) for a linear concentration profile of the bad «e ; /1 = 8.79267, significantly larger than the linear
thermal conductor across the film. It is expressed irprofile. The reason for this difference is that the con-
terms of the variablg = (1—3z/d)(8 — 1)+ 8, which  centration profile£/d)?, when integrated ovex, gives
varies in the range 2 8 < X < 28 — 1 over the film a smaller overall volume fraction of poor conductor in
thickness. the entire film than does the linear concentration profile
The predictions of Equation 11 are shown in Fig. 2, aswith the same limiting concentrations. This lower over-
well as in the second column of Table IV. Note that theall concentration, combined with a larger concentration
drop intemperature occurs mostly in the upper (poorly-of good conductor at any given height within the film,
conducting) half of the film, i.e., for > d/2. The leads to larger local thermal conductivitie&) than in
drop is a strongly nonlinear function afeven though the case of a linear profile, and hence to a higher.
the concentration profile is linear m However, T (2) T(2) for this composition profile can be obtained
does not drop as abruptly near= d as in the nu- most conveniently by numerically integrating Equa-
merical simulations for the same concentration profiletion 6. The results are shown in the third column of
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Table IV. In comparison td (z) for a linear concen- which were shown in the last column of Table II. This
tration profile, the temperature in the quadratic caseprofile corresponds to a concentration of good conduc-
drops more rapidly near the top (i. e., the hot) sur-tor which increases quadratically with distance away
face of the film. The reason for this behavior is thatfrom the hot sideZ = d) of the film. Qualitatively,
there is only a small concentratiqr(z) of poor con- this p(z) profile looks quite similar to the square-root
ductor on the cold side of the film because of4fs profile discussed earlier; hence, the temperature profile
concentration-dependence. Hence, most of the film iand«. ; are similar to those in the fourth column of
effectively a good thermal conductor, and only a thinTable IV.
layer near the top surface is poorly conducting. The
temperature, therefore, drops more steeply near the top
surface. 5. Discussion

We now compare the results from a linear concendt may appear surprising that, in dealing with a graded
tration profile to those obtained from a quadratic pro-composite, we use a 3D rather than a 2D EMA to es-
file containing thesametotal volume fraction of poor timate the local thermal conductivity at a particular
conductor in the entire film. The concentration pro-heightz in the film. But in fact this is a correct pro-
file p(2) = [1 + 3(z/d)?] /4 satisfies this requirement, cedure: using the 3D EMA ensures that, when the vol-
sincefod 11+ 3(@z/d)2dz= fgj(z/d)dz —d/2.Note ume fraction isz-independent, the 3D EMA result is
that in this case the concentration of poor conductor afecovered.
z = O/is finite. This condition is needed if we require a  On the other hand, the EMA procedure for a graded
quadratic profile distributed in such a way tiz =  composite is probably most suitable only if certain ge-
d) = 1, while still containing the same amount of poor 0metric conditions are satisfied. We now discuss what
conductor as in a film with a linear concentration pro-these conditions are likely to be. Recall that the EMA

file. The temperature profile resulting from thigz) is ~ is obtained (in a two-component composite, for exam-
readily obtained numerically from Equations 2 and 6;Ple) by imagining a particle of each type embedded in
the results are listed in the 5th column of Table IV. Inan effective medium which is self-consistently deter-
comparison to the linear profile, the temperature drognined. The usual EMA Equation 1 is obtained if that
is slightly steeper in the upper part of the film, becausenedium is uniform. It is reasonable to use the same
of thez2 concentration-dependence. However, the temProcedure for gradedcomposite, therefore, if the av-
perature varies only slowly in the lower half of the film €rage concentration does not vary substantially on the
(Z < d/2)1 because of the slow variation of the Concen_length scale of the size of the partiCleS being embedded.

tration of poor conductor witk in this part of the film.  To make this rather vague condition slightly more pre-
cise, we might demand that the volume fraction vary

. ) by no more tharjAp| over a distanca&a, whereAp
4.2.3. Square-root concentration profiles is a small percentage of unitg, is a typical particle
While p(z) = (z/d)? implies a smaller volume fraction radius, anch > 1 is a suitable distance factor. These
of poor conductor than a linear variation, a square-rootgonditions may be combined to give the requirement
profile p(z) = +/z/d implies alarger volume fraction  |dp/dzina < |Ap|, where ¢b/dz is the magnitude of

of poor conductor. In this case, the EMA leads to atherthe concentration gradient. Equivalently, this condition
mal conductivityce | = 2.99639. This value is smaller may be written

thanthat of alinear profile, because of the larger amount
of poor conductor. The calculated temperature profile is
shown in the fourth column of Table IV. Note thE(z)
varies more slowly wittz in the upper part of the film

(z > d/2) than in the linear case; this slow variation is Thus, for agivenconcentration gradient, our effective-
due to the relatively slow decrease in concentration ofnedium approach should be best for very small parti-
poor conductor in the upper part of the film. cles.

Next, we consider the concentration profiéz) = The present work can be extended in a variety of
(3/4)+/z/d, which carries thesameamount of poor ways. For example, the same numerical technique used
conductor as in a linear profile. In this case, the re+o find the thermal conductivity within the composite in
distribution of poor conductor into &z profile leads  Section 3 can also be used to calculate the distribution
to p = 3/4 atz = d, rather tharp = 1 as in the linear of temperature gradients in the composite. The calcula-
profile. Solving for the effective thermal conductivity tionisanalogoustothatusedto compute the distribution
in this case, we finde ;, = 125329. The higheke | of electric fields in an electrical composite. Moreover,
results from the fact that the concentration of poor conthe present approach is not limited to problems at zero
ductor is suppressed near the top of the film. In factfrequency, nor to thermal properties. For example, one
p < 3/4 at any depth inside the film, implying that could study the optical, infrared, microwave, or non-
much of the film is a relatively good thermal conduc- linear optical properties of functionally graded optical
tor. The temperature profile for this case is shown incomposites; these could be potentially of even greater
the 6th column of Table IV. The temperature variationinterest than the FGC'’s used as thermal barriers. Fi-
is slower than in the linear case, because of the fact thatally, it might be of interest to extend the graded EMA
x(2) is slowly varying withz. approach used here to treat explicitly time-dependent

The last column in Table IV gives the EMA results problems, such as the time-dependent equation for ther-
for p(z) = 1 — [1 — (z/d)]?, the simulation results for mal diffusion in the functionally graded composite.

aldp/dz « 1. (14)
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